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1. 

It is very important to identify the model of a dynamic system in the applied mechanics
field. With the development of computer technology and the enhancement of experimental
means, the identification of the dynamic model has developed rapidly. A vast literature
now exists on this topic and a wide variety of techniques is now available, such as
parametric or non-parametric identification methods, time domain or frequency domain
estimation approaches, etc. But there exist some unavoidable limitations in most of the
methods, including that a priori information about the system under investigation is
required, that the properties of the identified system is constrained and that the nature of
the excitation source to be used is restricted, and so forth.

Artificial neural network models have several inherent properties which distinguish them
from traditional computational models, such as parallel architectures and computations,
higher degree of robustness or fault tolerance and property of adaptation or learning etc.
These properties make neural networks the ideal choice in cases in which real-time
adaptation and fast processing of large amounts of data are required. For this reason a
lot of attention has been paid to neural networks for system identification. But there is
a paucity of publications in the open literature that address the use of neural networks
for identifying physical systems encountered in the applied mechanics field. Masri et al.
explored a procedure based on neural networks for the identification of non-linear dynamic
systems [1]. It was a successful attempt to employ neural network techniques to physical
systems in the applied mechanics field. Because of the abilities of learning and
generalization of neural networks, no a priori information about the system under
investigation is required and the nature of the excitation source to be used is not restricted
in the procedure. The approach can be used effectively for the identification of the restoring
forces of some typical non-linear structural systems, but it only dealt with the identification
of single-degree-of-freedom systems in reference [1]. This study extends the procedure to
multi-degree-of-freedom non-linear vibration systems and makes the procedure capable of
extensive application.
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2.  

A general mechanical structure can be discretised into a lumped parameter,
n-degree-of-freedom system. The equations of motion can be written as

m1ÿ1 + g1(y1, ẏ1, . . . , yn , ẏn)=F1(t),

m2ÿ2 + g2(y1, ẏ1, . . . , yn , ẏn)=F2(t),
g
G

G

G

G

F

f

···

mnÿn + gn(y1, ẏ1, . . . , yn , ẏn)=Fn(t), (1)

where gi(y1, ẏ1, . . , yn , ẏn) and Fi(t) represent the linear and non-linear restoring force and
the input excitation acting at the mass mi , respectively. It is assumed that the excitations
Fi(t) and the accelerations ÿi(t) (i=1, 2, . . . , n) of the system are available from
measurements, and that the mass mi (i=1, 2, . . . , n) are known or easily estimated. The
non-linear characteristics of the system and the restoring forces gi(y1, ẏ1, . . . , yn , ẏn)
(i=1, 2, . . . , n) acting on the system are not known. The purpose of the paper is to
identify the restoring forces, which are the functions of the displacements and the
velocities, using measurements and neural networks.

From equation (1) the restoring forces can be written as

gi(y1, ẏ1, . . . , yn , ẏn)=Fi(t)−miÿi(t), (i=1, 2, . . . , n). (2)

The estimation procedure described in this paper requires the velocity and displacement
responses simultaneously at each response location. The displacements and the velocities
of the system can be found by direct measurements or through integration of ÿi(t). When
employing an integration procedure the reconstruction of the required signals can be
accomplished by integrating the measured acceleration response at each location by using
the trapezium rule [2, 3]. There exist two problems in using the integration technique. One
is that the integration procedure will introduce a constant of integration at each step and
the resultant signal will be

ẏi(t)=g ÿi(t) dt+Ai , yi(t)=g ẏi(t) dt+Ait+Bi . (3)

It is clear that the velocity and displacement data will suffer from the introduction of mean
level and linear drift values, respectively. Using these signals directly in the estimation
procedure will give poor estimates. These effects can be removed by passing the integrated
signals through a high-pass filter [2–4]. It has been demonstrated that the preprocessed
signals can be used successfully in the parameter estimation procedure [2]. Another
problem is that if the measured acceleration signal is noisy, then the reconstruction of the
velocity and displacement signals could be problematic. If the reconstructed data from the
noisy measured data are employed, the identified results must be subject to error. The size
of the error appears to increase as noise level increases. Nevertheless, the identification
studied in this paper is just characteristic but not parametric, therefore, the effect of noise
on the identified restoring forces is less than that on the estimated parameters. A
reasonably identified restoring force can still be characterized so long as the measured
signals are within acceptable experimental error.

If the displacement, velocity, acceleration and the input excitation signals are taken at
discrete times tk ,
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yik = yi(tk), ẏik = ẏi(tk), ÿik = ÿi(tk), Fik =Fi(tk), (i=1, 2, . . . , n), (4)

then the values of the restoring forces at times tk are

gik =Fik −miÿik , (i=1, 2, . . . , n). (5)

3.  

A three-layer feedforward perception is employed in this paper. The inputs to the net
are the measured or calculated displacements and velocities y1(t), ẏ1(t), . . . , yn(t), ẏn(t).
The network outputs g'i (y1, ẏ1, . . . , yn , ẏn) (i=1, 2, . . . , n) are the unknown restoring
forces. The network topology is represented by the weight matrices [Wi] and the threshold
vectors {ui} (i=1, 2).

Let

{y}= {y1, ẏ1, . . . , yn , ẏn}T (6)

be the input vector to the net,

{g'}= {g'1 , g'2 , . . . , g'n }T (7)

be the output vector to the net,

f(x)= tanh (ax) (aq 0) (8)

be a non-linear activation function.
The outputs of the network are computed according to the following equations:

{v̄}=[w1]{y}+ {u1}, vj = f(v̄j) ( j=1, 2, . . . , l),

{ḡ}=[w2]{v}+ {u2}, g'j = f(ḡj) ( j=1, 2, . . . , n), (9)

where l is the number of the neurons in the hidden layer.
The identification approach consists of two phases: the network training (or learning)

phase and the validation phase. During the training phase, the network is presented with
the sequence of input vectors {y1k , ẏ1k , . . . , ynk , ẏnk}T and the sequence of desired output
vectors {g1k , g2k , . . . , gnk}T. Given a set of weights and thresholds (which initially is chosen
randomly), the input vector is propagated forward through the net and the network output
{g'1k , g'2k , . . . , g'nk}T is calculated according to equations (9).

The error between the actual system output and the desired output is defined as

E=
1
2

s
p

k=1

s
n

i=1

(gik − g'ik)2, (10)

where p is the number of patterns in the training set.
The purpose of the training phase is to adjust the weights and thresholds w1

ij , w2
jk , u1

j ,
u2

k(i=1, 2, . . . , 2n; j=1, 2, . . . , l; k=1, 2, . . . , n) which are the elements of [w1], [w2],
{u1} and {u2}, respectively, in the direction that will reduce the error. The training is
performed by the back-propagation algorithm [5].

During the validation phase, the network is given other input vector sequences
{y1a , ẏ1a , . . . , yna , ẏna}T not among those used for training. If the training was successful and
the network is a good identifier, it should produce an output sequence {g'1a , . . . , g'na}T very
close to the actual system output

{g1a , . . . , gna}T = {g1(y1a , . . . , ẏna), . . . , gn(y1a , . . . , ẏna)}T (11)
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4.  

In order to verify the neural network procedure extended to multi-degree-of-freedom
nonlinear systems, the restoring force identification of a three-degree-of-freedom vibration
system with hardening springs is examined. The restoring forces in equations (1) are

g1(y1, ẏ1, y2, ẏ2, y3, ẏ3)= k11y1 + k12(y1 − y2)+ k13(y1 − y3)+ k(3)
11 y3

1

+c11ẏ1 + c12( ẏ1 − ẏ2)+ c13( ẏ1 − ẏ3),

g
G

G

G

G

F

f

g2(y1, ẏ1, y2, ẏ2, y3, ẏ3)=−k12(y1 − y2)+ k23(y2 − y3)− c12( ẏ1 − ẏ2)+ c23( ẏ2 − ẏ3),

g3(y1, ẏ1, y2, ẏ2, y3, ẏ3)=−k13(y1 − y3)− k23(y2 − y3)+ k33y3 − c13( ẏ1 − ẏ3)

− c23( ẏ2 − ẏ3)+ c33ẏ3, (12)

where the values of the physical parameters are taken as: m1 =1 kg, m2 =1·3 kg,
m3 =2 kg, k11 =1000 N/m, k12 =2000 N/m, k13 =800 N/m, k22 =1200 N/m,
k23 =1500 N/m, k33 =3000 N/m, c11 =20 Ns/m, c12 =15 Ns/m, c13 =10 Ns/m,
c22 =15 Ns/m, c23 =30 Ns/m, c33 =25 Ns/m, k(3)

11 =1 000 000 N/m3.
The method under consideration imposes no restrictions on the nature of the excitation

source to be used as a probing signal. In the present example, the excitation used for
training the neural network is a swept sine signal with amplitude 40 N and excitation
frequency 2p. The excitation only exists at m1. The net inputs {y1k , ẏ1k , y2k , ẏ2k , y3k , ẏ3k}T

and the desired outputs {g1k , g2k , g3k}T are sampled in the time interval [0·2, 20] s at intervals
of 0·2 s. The number of patterns in the sample set is p=200. The number of the hidden
layer neurons is l=13. Since the network has 6 inputs, 13 nodes in the hidden layer, and
3 outputs, the total number of the network parameters to be adjusted is 133 (117 weights
and 16 thresholds terms). The time required in the training phase depends on the desired
error E defined in equation (9). In the present example, the initial error is E=35·2376,
the desired error is taken as E=0·0004, and the number of iterations of the present neural
network during the training phase is 10 379. The data used in the validation phase are
obtained by employing the excitation at m1 with amplitude 38 N. The reaction speed in
the validation phase is very fast. The identification results can be obtained immediately
after inputting the validation data into the network. Table 1 gives the minimum and
maximum values of measurements and identifications of displacements, velocities and

T 1

Comparisons between measurements and identifications of displacements, velocities and
restoring forces

Errors of Errors of
minima maxima

Measurements Minima Maxima Estimates Minima Maxima (%) (%)

y1 −0·01426 0·01418 y'1 −0·01364 0·01355 4·35 4·44
ẏ1 −0·07850 0·10188 ẏ'1 −0·06898 0·09680 12·13 4·99
y2 −0·00755 0·00744 y'2 −0·00722 0·00711 4·37 4·44
ẏ2 −0·04243 0·05394 ẏ'2 −0·04026 0·05125 5·11 4·99
y3 −0·00433 0·00434 y'3 −0·00414 0·00415 4·39 4·38
ẏ3 −0·02388 0·03152 ẏ'3 −0·02282 0·02993 4·44 5·04
g1 −37·68837 39·23965 g'1 −35·84920 37·28506 4·88 4·98
g2 −0·39631 0·32541 g'2 −0·33963 0·30124 14·30 7·43
g3 −0·38574 0·27437 g'3 −0·35752 0·25204 7·32 8·14
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Figure 1. Measurements g2(y2). Figure 2. Measurements g2(ẏ2).

restoring forces, and the relative errors of the minimum and maximum values. The
simulated results indicate that the relative errors of the minimum and maximum values
increase with the increase of the difference between the excitation amplitudes used in the
training and validation phases. In the present example the relative difference of the
excitation amplitudes used for training and validation is 5%. From Table 1 it can be
calculated that the average relative errors of the minima and maxima of the measurements
and identifications of displacements and velocities are 5·80% and 4·71%, respectively, and
those of the measurements and identifications of restoring forces are 8·83% and 6·85%,
respectively. In general, the average relative errors of restoring forces are larger than those
of displacements and velocities, and all of these average relative errors have basically the
same order of amplitude as the relative difference of the excitation amplitudes used for
training and validation.

In order to inspect and compare the identification results, Figures (1) and (2) show the
measurements g2(y2) and g2(ẏ2), where y2 and ẏ2 are taken as independent variables,
respectively, Figures (3) and (4) show the corresponding identifications g'2(y'2) and g'2(ẏ'2),

Figure 3. Identification results g'2(y'2). Figure 4. Identification results g'2(ẏ'2).
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Figure 5. Measurements of linear system g*2 (y*2 ). Figure 6. Measurements of linear system g*2 (ẏ*2 ).

respectively; Figures (5) and (6) show the restoring forces g*2 (y*2 ) and g*2 (ẏ*2 ), which are
from the linear system corresponding to the non-linear system used in the present example.

From Table 1 and Figures 1–4 it can be seen that the procedure using neural networks
and time domain measurements to identify the restoring forces is efficient for
multi-degree-of-freedom vibration systems. The comparisons between Figures 3, 4 and
Figures 5, 6 indicate that the existence of the non-linear terms in the system can be
estimated from the identified restoring forces.

5. 

This study demonstrates that the procedure based on the use of artificial neural networks
can be used effectively for the identification of the restoring forces of multi-degree-of-free-
dom non-linear vibration systems. The effect of non-linearities in the systems can be
estimated from the identified results.
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